568 research outputs found

    Theoretical study of the (3x2) reconstruction of beta-SiC(001)

    Full text link
    By means of ab initio molecular dynamics and band structure calculations, as well as using calculated STM images, we have singled out one structural model for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC, amongst several proposed in the literature. This is an alternate dimer-row model, with an excess Si coverage of 1/3, yielding STM images in good accord with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com

    Ab initio Study of Misfit Dislocations at the SiC/Si(001) Interface

    Full text link
    The high lattice mismatched SiC/Si(001) interface was investigated by means of combined classical and ab initio molecular dynamics. Among the several configurations analyzed, a dislocation network pinned at the interface was found to be the most efficient mechanism for strain relief. A detailed description of the dislocation core is given, and the related electronic properties are discussed for the most stable geometry: we found interface states localized in the gap that may be a source of failure of electronic devices

    Relaxation processes in thiophene-based random copolymers

    Get PDF
    The relaxation dynamics of soluble polyalkylthiophenes obtained by the random copolymerisation of 3,4-dibutylthiophene and 3-butylthiophene monomers is investigated. In these systems, the effective conjugation length, the optical gap and the non-radiative decay rate are controlled by varying the content of disubstituted monomers, the steric hindrance of which induces a twisting angle between thiophene rings. Several indications are reported in favour of spectral diffusion of the photoexcitations. Migration processes mainly occur within a few tens of picoseconds

    Tailoring the electronic properties of silicon with cysteine: A first principle study

    Get PDF
    We discuss the electronic structure modifications induced on the dihydride-terminated Si(001) surface upon cysteine adsorption by means of ab initio calculations: several stable functionalization schemes are presented, providing different routes for biological recognition, surface nanostructuring, and biomolecular electronics applications. The resulting hybrid systems are discussed and compared in terms of stability, structural, and electronic properties. Based on our results, we propose STM and photoemission experiments to determine unambiguously the adsorption mechanism involved and the attached functional group

    Chiral Polyalkylthiophenes for Organic Light Emitting Diodes

    Get PDF
    Chiral polyalkylthiophenes are noncentrosymmetric organic materials which can be used both in second harmonic-generation devices and in polarized light emitting diodes. In this work we present the synthesis and the characterization of a polyalkylthiophene with a chiral center very close to the conjugated backbone: poly(3-[(S)-2-methylbutyl]thiophene) (PMBT). Circular dichroism (CD) measurements have been carried out to ascertain the chirality of these materials. The CD spectra show intense signals both in mixed solvents and in the solid state. The strong Cotton effect can be associated to a highly ordered aggregated phase whose nature is still under investigation. We also present the photo and electroluminescence characterization of single layer light emitting diode (LED) with the following configuration: ITO (Tin Indium Oxide)/PMBT/Al

    Towards realistic laparoscopic image generation using image-domain translation

    Get PDF
    Background and ObjectivesOver the last decade, Deep Learning (DL) has revolutionized data analysis in many areas, including medical imaging. However, there is a bottleneck in the advancement of DL in the surgery field, which can be seen in a shortage of large-scale data, which in turn may be attributed to the lack of a structured and standardized methodology for storing and analyzing surgical images in clinical centres. Furthermore, accurate annotations manually added are expensive and time consuming. A great help can come from the synthesis of artificial images; in this context, in the latest years, the use of Generative Adversarial Neural Networks (GANs) achieved promising results in obtaining photo-realistic images. MethodsIn this study, a method for Minimally Invasive Surgery (MIS) image synthesis is proposed. To this aim, the generative adversarial network pix2pix is trained to generate paired annotated MIS images by transforming rough segmentation of surgical instruments and tissues into realistic images. An additional regularization term was added to the original optimization problem, in order to enhance realism of surgical tools with respect to the background. Results Quantitative and qualitative (i.e., human-based) evaluations of generated images have been carried out in order to assess the effectiveness of the method. ConclusionsExperimental results show that the proposed method is actually able to translate MIS segmentations to realistic MIS images, which can in turn be used to augment existing data sets and help at overcoming the lack of useful images; this allows physicians and algorithms to take advantage from new annotated instances for their training

    Dynamical-charge neutrality at a crystal surface

    Get PDF
    For both molecules and periodic solids, the ionic dynamical charge tensors which govern the infrared activity are known to obey a dynamical neutrality condition. This condition enforces their sum to vanish (over the whole finite system, or over the crystal cell, respectively). We extend this sum rule to the non trivial case of the surface of a semiinfinite solid and show that, in the case of a polar surface of an insulator, the surface ions cannot have the same dynamical charges as in the bulk. The sum rule is demonstrated through calculations for the Si-terminated SiC(001) surface.Comment: 4 pages, latex file, 1 postscript figure automatically include

    Nature of bonding and electronic structure in MgB2, a boron intercalation superconductor

    Full text link
    Chemical bonding and electronic structure of MgB2, a boron-based newly discovered superconductor, is studied using self-consistent band structure techniques. Analysis of the transformation of the band structure for the hypothetical series of graphite - primitive graphite - primitive graphite-like boron - intercalated boron, shows that the band structure of MgB2 is graphite-like, with pi-bands falling deeper than in ordinary graphite. These bands possess a typically delocalized and metallic, as opposed to covalent, character. The in-plane sigma-bands retain their 2D covalent character, but exhibit a metallic hole-type conductivity. The coexistence of 2D covalent in-plane and 3D metallic-type interlayer conducting bands is a peculiar feature of MgB2. We analyze the 2D and 3D features of the band structure of MgB2 and related compounds, and their contributions to conductivity.Comment: 4 pages in revtex, 3 figures in 4 separate EPS file

    Reconstruction and thermal stability of the cubic SiC(001) surfaces

    Full text link
    The (001) surfaces of cubic SiC were investigated with ab-initio molecular dynamics simulations. We show that C-terminated surfaces can have different c(2x2) and p(2x1) reconstructions, depending on preparation conditions and thermal treatment, and we suggest experimental probes to identify the various reconstructed geometries. Furthermore we show that Si-terminated surfaces exhibit a p(2x1) reconstruction at T=0, whereas above room temperature they oscillate between a dimer row and an ideal geometry below 500 K, and sample several patterns including a c(4x2) above 500 K.Comment: 12 pages, RevTeX, figures 1 and 2 available in gif form at http://irrmawww.epfl.ch/fg/sic/fig1.gif and http://irrmawww.epfl.ch/fg/sic/fig2.gi
    • …
    corecore